相变是指物质集聚态的变化。物质在发生相变时,由于分子重新排列和分子热运动速度改变,必然伴随着吸收或放出一定的热量,这种热量称为相变潜热。相变制冷就是利用物质由质密态到质稀态的相变(融化、蒸发、升华)时的吸热效应达到制冷目的。
制冷技术中常用纯水冰、溶液冰或冰盐的融化过程来制冷。由于这种方式都是以一定数量的固体物质作制冷剂,作用于被冷却对象,一旦固体全部相变制冷过程即告结束,所以不能利用它们的融化过程来组成制冷机的循环。
天然冰制冷是最早使用的降温方法,但它的来源是有限的,现代制冷技术中大量应用的纯水冰都是制冷机制备的。在标准大气压(101325Pa)下,纯水冰的融化温度为273.15K,融化潜热为335kJ/kg。所以,利用纯水冰融化能使被冷却的物体保持O℃以上的温度。
3条相平衡线将图分为3个区域,即:水、水蒸气和冰。三相点O的温度为273.16K,压力为610.62Pa。OC线是水蒸气和水的平衡线,即水汽化过程中的温度和压力关系曲线;OB线是冰和水的平衡线;OA线是冰和水蒸气的平衡线,即冰的升华曲线。可以看出,在三相点和三相点以下时,冰可以直接升华为水蒸气,冰升华时的温度与相应的压力有关。尽管冰升华也可以制冷,但实际应用中主要还是利用冰融化制冷。
冰盐作为制冷剂可以实现0℃以下的制冷。冰盐是指冰和盐类的混合物,工业上应用最广的是冰块与工业食盐(NaCl)的混合物。冰盐冷却过程包括冰融化吸热和盐溶解吸热:首先是冰吸热融化,在冰表面形成一层水膜,此时的温度为OC;接着盐溶解于水膜中,同时要吸收溶解热,造成盐水膜的温度降低;继而冰在较低的温度下进一步融化,并通过其表层的盐水膜与被冷却对象发生热交换。这样,当冰全部融化后,形成均匀的盐水溶液。冰盐冷却所能到达的温度与盐的种类及混合物中盐与冰的比例有关。
当冰盐按一定的配比混合融化后可以形成共品溶液,常常被用来冻结成共晶冰(也称溶液冰)进行冷量储存,然后在需要用冷的时候吸收热量而融化,使冷却对象降温。共晶冰在融化过程中温度是不变的,该温度称为共晶温度。共晶温度低于0℃的共晶冰通常用于无机械制冷的冷藏汽车中,共晶温度高于0℃的共晶冰通常作为蓄能空调系统的储能介质。表2.2 列出了一些用于制冷目的的共晶溶液的物理性质。
近年来,固体相变蓄冷技术在制冷空调中的研究和应用日益广泛,其目的在于缓解能量供求双方在时间、强度和地点上的不匹配,合理利用能源和减少环境污染。例如,采用传统的冰蓄冷,在冷量富足时通过制冰将冷量储存到固态冰中,到冷量需求很大的时刻再以冰融化的方式将冷量释放出来,从而解决制冷设备定常制冷量与用冷负荷起伏的不平衡矛盾。采用动态制冰技术制取冰水混合物(Iceslurry)便于输送,在食品冷截方面更是具有得天独厚的优势。
在蓄冷空调系统的应用中,由于冷源温度的需求不是很低,若采用冰蓄冷,则系统中还需要增加中间换热装置,而且制冰过程中制冷机的效率要比正常空调工况下的低。因此,目前很多研究者都致力于研究开发融点在4-10℃的相变材料作为空调蓄能用。这类材料通常叫做高温相变材料,简称PCM。目前,这类材料的研究集中在两方面:一是共晶盐或复合盐水合物,代表性的成果是由美国TRANSPHASE公司与哈佛大学生化研究所在1981年开发成功的T-47型(融点为8.3℃)和1988年调配成功的T-41(融点为5℃)型两种产品;二是氟利昂气体水合物,其融点可通过调节气体压力达到。 |
新闻投稿:news@51hvac.com